Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Rep Med ; 3(10): 100764, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: covidwho-2031747

RESUMEN

Omicron has become the globally dominant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, creating additional challenges due to its ability to evade neutralization. Here, we report that neutralizing antibodies against Omicron variants are undetected following COVID-19 infection with ancestral or past SARS-CoV-2 variant viruses or after two-dose mRNA vaccination. Compared with two-dose vaccination, a three-dose vaccination course induces broad neutralizing antibody responses with improved durability against different SARS-CoV-2 variants, although neutralizing antibody titers against Omicron remain low. Intriguingly, among individuals with three-dose vaccination, Omicron breakthrough infection substantially augments serum neutralizing activity against a broad spectrum of SARS-CoV-2 variants, including Omicron variants BA.1, BA.2, and BA.5. Additionally, after Omicron breakthrough infection, memory T cells respond to the spike proteins of both ancestral and Omicron SARS-CoV-2 by producing cytokines with polyfunctionality. These results suggest that Omicron breakthrough infection following three-dose mRNA vaccination induces pan-SARS-CoV-2 immunity that may protect against emerging SARS-CoV-2 variants of concern.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Formación de Anticuerpos , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/genética , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Citocinas , ARN Mensajero
2.
Antiviral Res ; 204: 105371, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1906744

RESUMEN

Although several vaccines and antiviral drugs against SARS-CoV-2 are currently available, control and prevention of COVID-19 through these interventions is limited due to inaccessibility and economic issues in some regions and countries. Moreover, incomplete viral clearance by ineffective therapeutics may lead to rapid genetic evolution, resulting in the emergence of new SARS-CoV-2 variants that may escape the host immune system as well as currently available COVID-19 vaccines. Here, we report that phytochemicals extracted from Chlorella spp. and Psidium guajava possess broad-spectrum antiviral activity against a range of SARS-CoV-2 variants. Through chromatography-based screening, we identified four bioactive compounds and subsequently demonstrated their potential antiviral activities in vivo. Interestingly, in hACE2 mice, treatment with these compounds significantly attenuates SARS-CoV-2-induced proinflammatory responses, demonstrating their potential anti-inflammatory activity. Collectively, our study suggests that phytochemicals from edible plants may be readily available therapeutics and prophylactics against multiple SARS-CoV-2 strains and variants.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Chlorella , Animales , Antivirales/uso terapéutico , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Ratones , Fitoquímicos/farmacología , SARS-CoV-2
3.
J Virol ; 96(6): e0187321, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1759293

RESUMEN

Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.


Asunto(s)
COVID-19 , Coinfección , Subtipo H1N1 del Virus de la Influenza A , Infecciones por Orthomyxoviridae , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , Coinfección/inmunología , Modelos Animales de Enfermedad , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Ratones , Infecciones por Orthomyxoviridae/inmunología , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
4.
mBio ; 11(3)2020 05 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1723548

RESUMEN

Due to the urgent need of a therapeutic treatment for coronavirus (CoV) disease 2019 (COVID-19) patients, a number of FDA-approved/repurposed drugs have been suggested as antiviral candidates at clinics, without sufficient information. Furthermore, there have been extensive debates over antiviral candidates for their effectiveness and safety against severe acute respiratory syndrome CoV 2 (SARS-CoV-2), suggesting that rapid preclinical animal studies are required to identify potential antiviral candidates for human trials. To this end, the antiviral efficacies of lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir for SARS-CoV-2 infection were assessed in the ferret infection model. While the lopinavir-ritonavir-, hydroxychloroquine sulfate-, or emtricitabine-tenofovir-treated group exhibited lower overall clinical scores than the phosphate-buffered saline (PBS)-treated control group, the virus titers in nasal washes, stool specimens, and respiratory tissues were similar between all three antiviral-candidate-treated groups and the PBS-treated control group. Only the emtricitabine-tenofovir-treated group showed lower virus titers in nasal washes at 8 days postinfection (dpi) than the PBS-treated control group. To further explore the effect of immune suppression on viral infection and clinical outcome, ferrets were treated with azathioprine, an immunosuppressive drug. Compared to the PBS-treated control group, azathioprine-immunosuppressed ferrets exhibited a longer period of clinical illness, higher virus titers in nasal turbinate, delayed virus clearance, and significantly lower serum neutralization (SN) antibody titers. Taken together, all antiviral drugs tested marginally reduced the overall clinical scores of infected ferrets but did not significantly affect in vivo virus titers. Despite the potential discrepancy of drug efficacies between animals and humans, these preclinical ferret data should be highly informative to future therapeutic treatment of COVID-19 patients.IMPORTANCE The SARS-CoV-2 pandemic continues to spread worldwide, with rapidly increasing numbers of mortalities, placing increasing strain on health care systems. Despite serious public health concerns, no effective vaccines or therapeutics have been approved by regulatory agencies. In this study, we tested the FDA-approved drugs lopinavir-ritonavir, hydroxychloroquine sulfate, and emtricitabine-tenofovir against SARS-CoV-2 infection in a highly susceptible ferret infection model. While most of the drug treatments marginally reduced clinical symptoms, they did not reduce virus titers, with the exception of emtricitabine-tenofovir treatment, which led to diminished virus titers in nasal washes at 8 dpi. Further, the azathioprine-treated immunosuppressed ferrets showed delayed virus clearance and low SN titers, resulting in a prolonged infection. As several FDA-approved or repurposed drugs are being tested as antiviral candidates at clinics without sufficient information, rapid preclinical animal studies should proceed to identify therapeutic drug candidates with strong antiviral potential and high safety prior to a human efficacy trial.


Asunto(s)
Antivirales/uso terapéutico , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Antivirales/farmacología , Betacoronavirus/inmunología , COVID-19 , Infecciones por Coronavirus/virología , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Hidroxicloroquina/uso terapéutico , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Estados Unidos , United States Food and Drug Administration , Carga Viral
5.
Nat Commun ; 13(1): 21, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1616983

RESUMEN

While the seroprevalence of SARS-CoV-2 in healthy people does not differ significantly among age groups, those aged 65 years or older exhibit strikingly higher COVID-19 mortality compared to younger individuals. To further understand differing COVID-19 manifestations in patients of different ages, three age groups of ferrets are infected with SARS-CoV-2. Although SARS-CoV-2 is isolated from all ferrets regardless of age, aged ferrets (≥3 years old) show higher viral loads, longer nasal virus shedding, and more severe lung inflammatory cell infiltration, and clinical symptoms compared to juvenile (≤6 months) and young adult (1-2 years) groups. Furthermore, direct contact ferrets co-housed with the virus-infected aged group shed more virus than direct-contact ferrets co-housed with virus-infected juvenile or young adult ferrets. Transcriptome analysis of aged ferret lungs reveals strong enrichment of gene sets related to type I interferon, activated T cells, and M1 macrophage responses, mimicking the gene expression profile of severe COVID-19 patients. Thus, SARS-CoV-2-infected aged ferrets highly recapitulate COVID-19 patients with severe symptoms and are useful for understanding age-associated infection, transmission, and pathogenesis of SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Modelos Animales de Enfermedad , SARS-CoV-2/inmunología , Esparcimiento de Virus/inmunología , Factores de Edad , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , COVID-19/genética , COVID-19/transmisión , Chlorocebus aethiops , Femenino , Hurones , Perfilación de la Expresión Génica/métodos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Células Vero , Virulencia
6.
J Microbiol ; 59(11): 1056-1062, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1453895

RESUMEN

The COVID-19 pandemic has caused unprecedented health, social, and economic crises worldwide. However, to date, there is an only a limited effective treatment for this disease. Human placenta hydrolysate (hPH) has previously been shown to be safe and to improve the health condition in patients with hyperferritinemia and COVID-19. In this study, we aimed to determine the antiviral effects of hPH against SARS-CoV-2 in vitro and in vivo models and compared with Remdesivir, an FDA-approved drug for COVID-19 treatment. To assess whether hPH inhibited SARS-CoV-2 replication, we determined the CC50, EC50, and selective index (SI) in Vero cells by infection with a SARS-CoV-2 at an MOI of 0.01. Further, groups of ferrets infected with 105.8 TCID50/ml of SARS-CoV-2 and treated with hPH at 2, 4, 6 dpi, and compared their clinical manifestation and virus titers in respiratory tracts with PBS control-treated group. The mRNA expression of immune-related cytokines was determined by qRT-PCR. hPH treatment attenuated virus replication in a dose-dependent manner in vitro. In a ferret infection study, treatment with hPH resulted in minimal bodyweight loss and attenuated virus replication in the nasal wash, turbinates, and lungs of infected ferrets. In addition, qRT-PCR results revealed that the hPH treatment remarkably upregulated the gene expression of type I (IFN-α and IFN-ß) and II (IFN-γ) IFNs in SARS-CoV-2 infected ferrets. Our data collectively suggest that hPH has antiviral efficacy against SARS-CoV-2 and might be a promising therapeutic agent for the treatment of SARS-CoV-2 infection.


Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Placenta/química , Hidrolisados de Proteína , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/farmacología , Alanina/uso terapéutico , Animales , Chlorocebus aethiops , Femenino , Hurones , Humanos , Masculino , Embarazo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/uso terapéutico , Células Vero , Replicación Viral/efectos de los fármacos
7.
Nat Commun ; 12(1): 4567, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1328845

RESUMEN

Few studies have used a longitudinal approach to describe the immune response to SARS-CoV-2 infection. Here, we perform single-cell RNA sequencing of bronchoalveolar lavage fluid cells longitudinally obtained from SARS-CoV-2-infected ferrets. Landscape analysis of the lung immune microenvironment shows distinct changes in cell proportions and characteristics compared to uninfected control, at 2 and 5 days post-infection (dpi). Macrophages are classified into 10 distinct subpopulations with transcriptome changes among monocyte-derived infiltrating macrophages and differentiated M1/M2 macrophages, notably at 2 dpi. Moreover, trajectory analysis reveals gene expression changes from monocyte-derived infiltrating macrophages toward M1 or M2 macrophages and identifies a macrophage subpopulation that has rapidly undergone SARS-CoV-2-mediated activation of inflammatory responses. Finally, we find that M1 or M2 macrophages show distinct patterns of gene modules downregulated by immune-modulatory drugs. Overall, these results elucidate fundamental aspects of the immune response dynamics provoked by SARS-CoV-2 infection.


Asunto(s)
COVID-19/genética , COVID-19/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiología , Animales , Líquido del Lavado Bronquioalveolar , Hurones
8.
J Microbiol ; 59(5): 530-533, 2021 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1204981

RESUMEN

To compare the standardized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence of high epicenter region with non-epicenter region, serological studies were performed with a total of 3,268 sera from Daegu City and 3,981 sera from Chungbuk Province. Indirect immunofluorescence assay (IFA) for SARS-CoV-2 IgG results showed a high seroprevalence rate in the Daegu City (epicenter) compared with a non-epicenter area (Chungbuk Province) (1.27% vs. 0.91%, P = 0.0358). It is noteworthy that the highest seroprevalence in Daegu City was found in elderly patients (70's) whereas young adult patients (20's) in Chungbuk Province showed the highest seroprevalence. Neutralizing antibody (NAb) titers were found in three samples from Daegu City (3/3, 268, 0.09%) while none of the samples from Chungbuk Province were NAb positive. These results demonstrated that even following the large outbreak, the seropositive rate of SARS-CoV-2 in the general population remained low in South Korea.


Asunto(s)
COVID-19/epidemiología , Brotes de Enfermedades , Estudios Seroepidemiológicos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Persona de Mediana Edad , República de Corea , Adulto Joven
9.
Nat Commun ; 12(1): 288, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: covidwho-1026824

RESUMEN

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Tratamiento Farmacológico de COVID-19 , Unión Proteica/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/química , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Leucocitos Mononucleares , Macaca mulatta , Masculino , Mesocricetus , Modelos Moleculares , Conformación Proteica , Glicoproteína de la Espiga del Coronavirus/química , Células Vero
10.
Emerg Microbes Infect ; 10(1): 152-160, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1012800

RESUMEN

Cases of laboratory-confirmed SARS-CoV-2 reinfection have been reported in a number of countries. Further, the level of natural immunity induced by SARS-CoV-2 infection is not fully clear, nor is it clear if a primary infection is protective against reinfection. To investigate the potential association between serum antibody titres and reinfection of SARS-CoV-2, ferrets with different levels of NAb titres after primary SARS-CoV-2 infection were subjected to reinfection with a heterologous SARS-CoV-2 strain. All heterologous SARS-CoV-2 reinfected ferrets showed active virus replication in the upper respiratory and gastro-intestinal tracts. However, the high NAb titre group showed attenuated viral replication and rapid viral clearance. In addition, direct-contact transmission was observed only from reinfected ferrets with low NAb titres (<20), and not from other groups. Further, lung histopathology demonstrated the presence of limited inflammatory regions in the high NAb titre groups compared with control and low NAb groups. This study demonstrates a close correlation between a low NAb titre and SARS-CoV-2 reinfection in a recovered ferret reinfection model.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , COVID-19/transmisión , Reinfección/inmunología , SARS-CoV-2/inmunología , Animales , COVID-19/virología , Chlorocebus aethiops , Hurones , Células Vero
11.
J Microbiol ; 58(10): 886-891, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-807667

RESUMEN

Various treatments and agents had been reported to inactivate RNA viruses. Of these, thermal inactivation is generally considered an effective and cheap method of sample preparation for downstream assays. The purpose of this study is to establish a safe inactivation method for SARS-CoV-2 without compromising the amount of amplifiable viral genome necessary for clinical diagnoses. In this study, we demonstrate the infectivity and genomic stability of SARSCoV- 2 by thermal inactivation at both 56°C and 65°C. The results substantiate that viable SARS-CoV-2 is readily inactivated when incubated at 56°C for 30 min or at 65°C for 10 min. qRT-PCR of specimens heat-inactivated at 56°C for 30 min or 65°C for 15 min revealed similar genomic RNA stability compared with non-heat inactivated specimens. Further, we demonstrate that 30 min of thermal inactivation at 56°C could inactivate viable viruses from clinical COVID-19 specimens without attenuating the qRT-PCR diagnostic sensitivity. Heat treatment of clinical specimens from COVID-19 patients at 56°C for 30 min or 65°C for 15 min could be a useful method for the inactivation of a highly contagious agent, SARS-CoV-2. Use of this method would reduce the potential for secondary infections in BSL2 conditions during diagnostic procedures. Importantly, infectious virus can be inactivated in clinical specimens without compromising the sensitivity of the diagnostic RT-PCR assay.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/virología , Manejo de Especímenes/métodos , Inactivación de Virus , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/virología , Genoma Viral , Inestabilidad Genómica , Calor , Humanos , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2
12.
Clin Microbiol Infect ; 26(11): 1520-1524, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-664085

RESUMEN

OBJECTIVES: The aim was to determine whether various clinical specimens obtained from COVID-19 patients contain the infectious virus. METHODS: To demonstrate whether various clinical specimens contain the viable virus, we collected naso/oropharyngeal swabs and saliva, urine and stool samples from five COVID-19 patients and performed a quantitative polymerase chain reaction (qPCR) to assess viral load. Specimens positive with qPCR were subjected to virus isolation in Vero cells. We also used urine and stool samples to intranasally inoculate ferrets and evaluated the virus titres in nasal washes on 2, 4, 6 and 8 days post infection. RESULTS: SARS-CoV-2 RNA was detected in all naso/oropharyngeal swabs and saliva, urine and stool samples collected between days 8 and 30 of the clinical course. Notably, viral loads in urine, saliva and stool samples were almost equal to or higher than those in naso/oropharyngeal swabs (urine 1.08 ± 0.16-2.09 ± 0.85 log10 copies/mL, saliva 1.07 ± 0.34-1.65 ± 0.46 log10 copies/mL, stool 1.17 ± 0.32 log10 copies/mL, naso/oropharyngeal swabs 1.18 ± 0.12-1.34 ± 0.30 log10 copies/mL). Further, viable SARS-CoV-2 was isolated from naso/oropharyngeal swabs and saliva of COVID-19 patients, as well as nasal washes of ferrets inoculated with patient urine or stool. DISCUSSION: Viable SARS-CoV-2 was demonstrated in saliva, urine and stool samples from COVID-19 patients up to days 11-15 of the clinical course. This result suggests that viable SARS-CoV-2 can be secreted in various clinical samples and respiratory specimens.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Manejo de Especímenes/métodos , Animales , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Chlorocebus aethiops , Heces/virología , Femenino , Hurones , Genoma Viral/genética , Humanos , Masculino , Viabilidad Microbiana , Persona de Mediana Edad , Pandemias , Faringe/virología , ARN Viral/genética , SARS-CoV-2 , Saliva/virología , Orina/virología , Células Vero , Carga Viral , Esparcimiento de Virus
13.
Cell Host Microbe ; 27(5): 704-709.e2, 2020 05 13.
Artículo en Inglés | MEDLINE | ID: covidwho-34929

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in China and rapidly spread worldwide. To prevent SARS-CoV-2 dissemination, understanding the in vivo characteristics of SARS-CoV-2 is a high priority. We report a ferret model of SARS-CoV-2 infection and transmission that recapitulates aspects of human disease. SARS-CoV-2-infected ferrets exhibit elevated body temperatures and virus replication. Although fatalities were not observed, SARS-CoV-2-infected ferrets shed virus in nasal washes, saliva, urine, and feces up to 8 days post-infection. At 2 days post-contact, SARS-CoV-2 was detected in all naive direct contact ferrets. Furthermore, a few naive indirect contact ferrets were positive for viral RNA, suggesting airborne transmission. Viral antigens were detected in nasal turbinate, trachea, lungs, and intestine with acute bronchiolitis present in infected lungs. Thus, ferrets represent an infection and transmission animal model of COVID-19 that may facilitate development of SARS-CoV-2 therapeutics and vaccines.


Asunto(s)
Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Hurones , Neumonía Viral/patología , Neumonía Viral/transmisión , Animales , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , COVID-19 , Modelos Animales de Enfermedad , Pandemias , SARS-CoV-2 , Vacunas Virales/inmunología , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA